翻訳と辞書 |
disjunctive sum : ウィキペディア英語版 | disjunctive sum In the mathematics of combinatorial games, the sum or disjunctive sum of two games is a game in which the two games are played in parallel, with each player being allowed to move in just one of the games per turn. The sum game finishes when there are no moves left in either of the two parallel games, at which point (in normal play) the player to move loses. This operation may be extended to disjunctive sums of any number of games, again by playing the games in parallel and moving in exactly one of the games per turn. It is the fundamental operation that is used in the Sprague–Grundy theorem for impartial games and which led to the field of combinatorial game theory for partisan games. ==Application to common games== Disjunctive sums arise in games that naturally break up into components or regions that do not interact except in that each player in turn must choose just one component to play in. Examples of such games are Go, Nim, Sprouts, Domineering, the Game of the Amazons, and the map-coloring games. In such games, each component may be analyzed separately for simplifications that do not affect its outcome or the outcome of its disjunctive sum with other games. Once this analysis has been performed, the components can be combined by taking the disjunctive sum of two games at a time, combining them into a single game with the same outcome as the original game.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「disjunctive sum」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|